Discriminative deep belief networks for microarray based cancer classification

نویسندگان

  • Esra Mahsereci Karabulut
  • Turgay Ibrikci
چکیده

Accurate diagnosis of cancer is of great importance due to the global increase in new cancer cases. Cancer researches show that diagnosis by using microarray gene expression data is more effective compared to the traditional methods. This study presents an extensive evaluation of a variant of Deep Belief Networks Discriminative Deep Belief Networks (DDBN) in cancer data analysis. This new neural network architecture consists Restricted Boltzman Machines in each layer. The network is trained in two phases; in the first phase the network weights take their initial values by unsupervised greedy layer-wise technique, and in the second phase the values of the network weights are fine-tuned by back propagation algorithm. We included the test results of the model that is conducted over microarray gene expression data of laryngeal, bladder and colorectal cancer. High dimensionality and imbalanced class distribution are two main problems inherent in the gene expression data. To deal with them, two preprocessing steps are applied; Information Gain for selection of predictive genes, and Synthetic Minority Over-Sampling Technique for oversampling the minority class samples. All the results are compared with the corresponding results of Support Vector Machines which has previously been proved to be robust by machine learning studies. In terms of average values DDBN has outperformed SVM in all metrics with accuracy, sensitivity and specificity values of 0.933, 0.950 and 0.905, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An adaptive estimation method to predict thermal comfort indices man using car classification neural deep belief

Human thermal comfort and discomfort of many experimental and theoretical indices are calculated using the input data the indicator of climatic elements are such as wind speed, temperature, humidity, solar radiation, etc. The daily data of temperature، wind speed، relative humidity، and cloudiness between the years 1382-1392 were used. In the First step، Tmrt parameter was calculated in the Ray...

متن کامل

SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy

 In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....

متن کامل

Learning in the Deep-Structured Conditional Random Fields

We have proposed the deep-structured conditional random fields (CRFs) for sequential labeling and classification recently. The core of this model is its deep structure and its discriminative nature. This paper outlines the learning strategies and algorithms we have developed for the deep-structured CRFs, with a focus on the new strategy that combines the layer-wise unsupervised pre-training usi...

متن کامل

Image Blur Classification and Parameter Identification Using Two-stage Deep Belief Networks

Image blur kernel classification and parameter estimation are critical for blind image deblurring. Current dominant approaches use handcrafted blur features [5, 6] that are optimized for a certain type of blur, which is not applicable in real blind deconvolution where the Point Spread Function (PSF) of the blur is unknown. Inspired by the successful applications of deep learning techniques to o...

متن کامل

Combining Generative and Discriminative Neural Networks for Sleep Stages Classification

Sleep stages pattern provides important clues in diagnosing the presence of sleep disorder. By analyzing sleep stages pattern and extracting its features from EEG, EOG, and EMG signals, we can classify sleep stages. This study presents a novel classification model for predicting sleep stages with a high accuracy. The main idea is to combine the generative capability of Deep Belief Network (DBN)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016